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A method based on energy minimization is used to determine the spacing and penetration of a regular array
of cracks in a slab that is shrinking due to a changing temperature field. The results show a range of different
crack propagation behavior dependent on a single dimensionless parameter, being the ratio of the slab thickness
and a characteristic length for the material. At low parameter values the minimum energy state can be achieved
by continually adding more cracks until a steady state is achieved. At higher values, a minimum crack spacing
is reached at finite time, beyond which the cracks are constrained to propagate with the minimum spacing. In
the latter case, the uniform propagation is potentially unstable to a spatial period doubling, leading to increas-
ingly complex crack penetration patterns. The energy minimization combined with the period doubling insta-
bility provides a means of determining the minimum energy state of cracks for all time. The problem consid-
ered here can be seen as a paradigm for cracking phenomena that occur on a large range of scales, from
planetary to microscopic.
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I. INTRODUCTION

There is a range of phenomena associated with the shrink-
age of materials which lead to arrays of more-or-less regu-
larly spaced cracks. Common examples of regular crack ar-
rays in thin layers of material are paints, glazing and other
coatings that have been deposited on substratesf1–3g, while
deeper crack arrays are observed in situations such as road
pavingf4,5g, concretef6g, drying of mudf7,8g, soil f9g food
f10g and timber f11g or the formation of basalt columns
f12,13g and other geological features both terrestrial and
extra-terrestrialf14,15g. There is often remarkable unifor-
mity in both the spacing and penetration of cracks. In some
cases the existence of cracks may be desirable, such as in
soil, since they assist the infiltration of water, or undesirable,
such as in many of the thin coating applications referred to
above. Thus it may be useful to know, first, whether a layer
of material that is undergoing shrinkage will crack at all, or
whether its mechanical properties are such that it can accom-
modate the stress associated with the shrinkage. Secondly,
should such a material crack in a regular array, it may be
valuable to know the separation between the cracks and the
extent of their penetration.

A particular example where the spacing between cracks
has economic significance is the process of formation of
coke from crushed coal. Coke is used in the iron-making
blast furnace as part of the conventional steelmaking process.
It is a lump material that is formed by the fusion of crushed
coal particles in a coke oven. The coke shrinks and a regular
array of cracks propagates in the direction of the temperature
gradient in the coke oven. The coke breaks into lumps whose
mean size depends on the mean spacing of the cracks. Both
the mean and distribution of lump sizes is important in the
performance of coke in the blast furnace, so the ability to
predict or control the crack spacing is of some importance
f16g.

There are several studies of the propagation of crack ar-
rays under various conditions. Nemat-Nasseret al. f17,18g,
Bažantet al. f19g, and Bahret al. f20,21g considered the
propagation of a regular array of cracks with a specified
spacing, including their stability. They showed that a regular
array of cracks having uniform penetration into a sample will
propagate uniformly until a critical state is reached, at which
every second crack stops growing. Using slightly different
approaches, each of the above determined and evaluated the
stability criterion for this critical state, which is based on the
change of sign of the second derivative of the strain energy
with respect to the crack penetration. In each of these studies
the spacing between the cracks was assumed, rather than
being determined from the model system.

This paper presents a method, based on energy minimiza-
tion of an array of cracks, for determining the optimal spac-
ing and penetration of the cracks as they form under the
effects of shrinkage. The aim is to determine the most likely
configuration of cracks and their progression with time.

II. MODEL FORMULATION AND SOLUTION

Consider the situation depicted in Fig. 1, where a slab
having constant material and thermal properties and initially
at uniform temperatureT0, is subject to a sudden change of
temperatureDT at the surfacez=1. Then, assuming heat
transfer by conduction alone, the temperature at any timet
after the sudden temperature change is given byf22g

Tsx,td = T0 + DTz+ 2DTo
n=1

`
cosnp sinnpz

np
e−n2p2t, s1d

where the distancez has been scaled with the slab thickness,
L, the timet has been scaled with the thermal diffusion time

t =
L2

k

andk is the thermal diffusivity of the slab.*Electronic address: David.R.Jenkins@csiro.au
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Assuming that the material behaves thermoelastically, the
equations of mechanical equilibrium are

]si j

]xi
= 0, s2d

where

si j = l„e− 3asT − T0d…di j + 2m„ei j − asT − T0ddi j… s3d

are the components of stress,l and m are the Lamé coeffi-
cients,

m =
Y

2s1 + nd
, l =

2mn

1 − 2n
,

Y is Young’s modulus,n is the Poisson ratio,a is the coef-
ficient of thermal expansion,

ei j =
1

2
S ]ui

]xj
+

]uj

]xi
D

are the strain components,ui are displacements and

e= eii .

The model equations assume quasistatic equilibrium, implicit
in which is that the crack propagation occurs at a faster rate
than the diffusion process. A corollary is that the dynamics of
crack propagation are not as significant as their energetics.
Also, the model assumes that the time for nucleation of
cracks is smaller than the diffusion time scale.

From these equations it can be shown that the local strain
energy densityU is given by

U =
1

2
le2 + mei jei j − s2m + 3ldasT − T0de

+ F9l

2
+ 3mGfasT − T0dg2 s4d

and the total strain energy of the slab is given by

S=E
V

UdV. s5d

In the case when the slab contains a regular array of mode
I sopeningd cracks of spacing 2l and penetrationp, the total
energy of the slab per unit length is

E =
S

l
+ h

p

l
, s6d

where the second term is due to the energy required to open
up the cracks, which is assumed to be proportional top. By
appropriate nondimensionalization, Eq.s6d becomes

E8sl,pd =
E

h
= F saDTd2YL

h
GS8

l
+

p

l
. s7d

The basic approach here is that the spacing and penetra-
tion of the cracks in the regular array are such that, at any
given time, they minimizeE8 f17,18,23g. The minimization
is achieved by first determining the dependence ofE8 on l
and p, which requires solving Eqs.s2d with appropriate
boundary conditions and determiningS8sl ,pd from Eq. s5d.

Note thatE8 depends upon the single dimensionless quan-
tity,

L

Lc
=

saDTd2YL

h
,

whereLc is a characteristic length of the material,

Lc =
h/Y

saDTd2 ,

which depends on its relative brittleness,h /Y, and sthe
square ofd its total shrinkageaDT for a given temperature
difference.Lc is the Griffith crack length for a shrinking
solid, and its significance is that cracking will occur when
diffusion of heat has penetrated the slab to a depth of roughly
Lc f24g.

Assuming that the temperature field is not affected by the
location of cracks, then the one-dimensional equations1d is
valid for all time. This is substituted into Eqs.s2d, which are
solved for each time, in order to evaluate the strain energy
integral, Eq.s5d.

Note that temperature is used here as the driver of the
shrinkage, but it could equally well be any other diffusive
phenomenon, such as drying or volatile transport.

Numerical solution

Since the slab thickness is finite, it is convenient to use
the finite element method for solution of equationss2d and
appropriate boundary conditions. A representative portion of
the geometry, taking into account the symmetry, is denoted
by the dashed lines in Fig. 1 and this is used for the calcu-
lations. Figure 2 shows the specific boundary conditions used
in the calculations. They are that the slab is fixed at the
bottom surface, but free at the top and along the crack sur-
face. There are symmetry conditions along the remainder of
the boundary. The particular conditions used relate to, for
example, a shrinking slab of material that is fixed to a very
stiff substrate maintained at constant temperature, and being
cooled at its free surface.

FIG. 1. Geometry of a slab with an array of regularly spaced
cracks, propagating from the top bounding surface. Dashed lines
denote the representative geometry used in the finite element
calculations.
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The general purpose finite element packageFastflo is
used for the numerical solution. The in-built unstructured
mesh generator has the ability to concentrate the mesh at
specific points. The mesh concentration is used to accurately
resolve the stress singularity at the crack tip.

The methodology used to determineE8sl ,pd is, for a
given timet, to solve the displacement equations and evalu-
ateS8sl ,pd for a range of values ofl andp as

Smn8 = S8slm,pnd, m= 1…M, n = 0…N, s8d

where

lm = m
Dl

L
, pn = n

Dp

L

and

Dl

L
=

2

M
and

Dp

L
=

1

N
.

Typically M =N=40 was used, meaning that 1640 evaluation
of S8 were obtained. For each evaluation, the number of
finite element nodes was proportional to the area of the ge-
ometry, so that approximately equivalent accuracy was main-
tained over all the evaluations ofS8. Notice that the maxi-
mum value ofl /L used is 2si.e., 4 times the slab thicknessd,
which from experience is sufficient to obtain the minimum
energy state. The calculations allow a regular grid of values
of E8 over l and p to be determined for any value ofL /Lc,
and biquadratic interpolation was used to determine the glo-
bal minimum of E8sl ,pd, which occurs atsl0,p0d. All the
results shown here are forn=0.3.

III. RESULTS AND DISCUSSION

A. Spacing and penetration

Figure 3 shows contour maps ofE8sl ,pd at various times,
for L /Lc=6. At t=0.002, the minimumE8 occurs whenp
=0, i.e. without any cracks at all, so that the material is able
to shrink without cracking. However, att=0.0045 the mini-
mum shifts to an array of cracks with finite penetration and
at later times the minimum point moves in the direction of
increased penetration. An alternative display ofsl0,p0d is
shown in Fig. 4, where their variation with time is plotted
explicitly.

FIG. 2. Boundary condition specification. The solid lines are
actual surfaces of the slab and the dashed lines are symmetry
planes.

FIG. 3. Contour plots ofE8sl ,pd for various timessmarked on
each graphd whenL /Lc=6. The square dot in 3 of the graphs indi-
cates the locationl0/L ,p0/L which minimizesE8. Note that the
contour spacing is small near the minimum compared to the remain-
der of the graph.

FIG. 4. Graphs ofl0/L ssolid lined andp0/L sdashed lined, ver-
sust for L /Lc=6.
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This graph shows that, untilt<0.004 the material does
not crack, but thereafter it will crack. Immediately after this
time, the minimum energy configuration is for large crack
spacing, but this reduces with time untilt<0.013, when
l0/L<0.66 andp0/L<0.23. For later times the minimum
energy state is a spacing which is greater than that att
=0.013, but with ever increasing penetration. So the mini-
mum crack spacing is about 1.33 times the slab thickness,
with the cracks penetrating almost 1/4 of the slab thickness.
For large time, the spacing and penetration approach an as-
ymptote with l0/L<0.92 and p0/L<0.83, so the cracks
never penetrate all the way through the slab.

Figure 5 shows the graph ofsl0/L ,p0/Ld versus time for
L /Lc=2. In this case no cracks will appear until aroundt
=0.06 but when they do appear, they penetrate almost half-
way through the slab. Thereafter, the minimum energy spac-
ing continues to decrease, without having a minimum value
as in theL /Lc=6 case.

Figure 6 shows the graph ofsl0/L ,p0/Ld versus time for
L /Lc=16. In this case cracking occurs very early, aroundt
=0.0006 and the minimum energy spacing decreases to

l0/L<0.27 at which stagep0/L<0.1 at t=0.0022. In other
words, the minimum crack spacing is about half the slab
thickness, but the penetration of the cracks is small. For later
times, l0 increases significantly to plateau at a value consid-
erably more than twice the minimum crack spacing.

The results show two different regimes of crack behavior,
depending onL /Lc. For low L /Lc no cracks appear for a
relatively long time, but when they do appear they penetrate
a long way through the slab. Becausel0 decreases monotoni-
cally with time, additional cracks are likely to appear in or-
der to achieve a situation as close as possible to the mini-
mum energy configuration. This process should continue
until a steady state is reached. This then completely describes
the crack propagation behavior for lowL /Lc.

For L /Lc above about 2.5, the curves ofl0 againstt have
a minimum value, which is denotedl0m occurring attm. At
that time, there is a correspondingp0m. For t. tm, the mini-
mum energy configuration can only be achieved by some
mechanism of crack coarsening, since the slab will already
contain cracks that are more closely spaced than the mini-
mum energy configuration. In order to achieve this, some
cracks must either stop, recede or even disappear completely
while others continue to propagate. While the latter two pos-
sibilities cannot be completely ruled out, it has been shown
by several authors, including Nemat-Nasseret al. f17g, that a
regular crack array, once formed, will propagate stably, with
each of the cracks maintaining the same length, provided that

]2S8sl,pd
]p2 . 0 s9d

for a fixed value ofl, and that it will lose stability to a state
where every second crack stops propagating while every
other one continues, when]2S8 /]p2 changes sign. As a re-
sult, the most likely scenario is that cracks with minimum
spacing,l0m, achieved attm, will continue to propagate for
t. tm in order to relieve the stress built up as the material
continues to shrink, subject to the above instability. Thus the
minimum in thel0 vs t curve defines a unique optimal value
of the crack spacing, which is 2l0m. It is this crack spacing
that would ultimately be observed on the surface of the slab,
regardless of the further propagation history of the cracks.

The remainder of the paper is concerned with the propa-
gation and stability of cracks fort. tm in cases wheretm
exists, i.e., forL /Lc larger than about 2.5.

B. Propagation of optimally spaced cracks

For values ofL /Lc.2.5 the energy minimization ap-
proach can be used to determine the propagation of optimally
spaced cracks, starting fromsl0m,p0md at t= tm. In such cases,
E8sl0m,pd is minimized with respect top to find the optimal
sminimum energyd penetration,pm for cracks of spacing 2l0m
for t. tm. Figure 7 shows a graph of the calculatedpm versus
t for L /Lc=16 with a continual increase in penetration ast
increases. The energy for the statefl0m,pmstdg is clearly
higher than that for the statefl0std ,p0stdg for t. tm in this
case, so is potentially unstable, as described earlier. A nu-
merical estimate of]2S8 /]p2 is obtained from the difference

FIG. 5. Graphs ofl0/L ssolid lined andp0/L sdashed lined, ver-
sust for L /Lc=2.

FIG. 6. Graphs ofl0/L ssolid lined andp0/L sdashed lined, ver-
sus t for L /Lc=16. The inset shows an expanded view of the be-
havior at small time.
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S8„l0m,pmstd… − S8„l0m,pmstd;d…

d2 , s10d

whereS8(l0m,pmstd ;d) is the strain energy of a state in which
the penetration of every second crack ispm+d and of every
other crack ispm−d f23g. Figure 8 shows a graph of this
difference for t. tm when L /Lc=16, calculated usingd
=0.1pmstd. It is difficult to obtain an accurate numerical
value of ]2S8 /]p2 due to the stress singularity at the crack
tip. A value of d proportional topmstd was used as it was
found that too small a value leads to poor resolution of the
effect of the two stress singularities, while too large a value
leads to a poor approximation to the second derivative. The
results show that]2S8 /]p2 changes sign att= tm1<0.0144,
indicating that the regular array of cracks with spacingl0m
loses stability in the form of the spatial “period doubling”
described above. Fort. tm1, every second crack continues to
propagate and the penetration satisfying the energy minimi-
zation criterion for this case is also shown in Fig. 7. This was
calculated by minimisingE8 with respect top, taking into

account that every second crack stopped propagating attm1.
The propagation occurs at a higher rate, at least initially, for
the new configuration.

The process can be repeated, with the array of 4l0m spaced
propagating cracks having every other crack stationary with
penetrationpmstm1d potentially becoming unstable to a situa-
tion where every fourth crack stops and only those separated
by 8l0m continue to propagate. However, the calculated sec-
ond derivative of the strain energy for this state does not
change sign, indicating that there will not be another period
doubling for this case. This is not surprising, since Fig. 6
shows that the asymptotic value ofl0 is less than 4l0m.

The same procedure was followed forL /Lc=32, in which
case a period doubling occurs attm1<0.0035 and a second at
tm2<0.0195. Accurate resolution of the strain energy and the
stability criterion becomes more difficult asL /Lc increases
using the present approach, but it seems most likely that
further doublings are possible at higher values. The results
show that the effect of the period doubling cascade is to
bring the already cracked material closer to the minimum
energy state associated with uniformly penetrating cracks.

After having carried out the energy minimisation and
evaluated the stability criterion as time progresses, it is pos-
sible to determine the crack configuration at large time, when
the temperature field has reached a steady state and the
cracks are no longer propagating. Figure 9 shows schematics
of the final crack configurations for 4 different values of
L /Lc. Each configuration is achieved by a different cracking
route.

For L /Lc=2, the set of uniformly spaced cracks with uni-
form penetration is achieved by addition of extra cracks as
time proceeded.

For L /Lc=6 a similar state is achieved via a similar route
until a minimum spacing is reached, after which cracks at the
minimum spacing propagate together. Note that the crack
spacing is smaller in this case, as is the final crack penetra-
tion, compared toL /Lc=2.

For L /Lc=16, the state of equally spaced cracks having
alternating penetration is achieved by a similar route to the
L /Lc=6 case until the uniform spaced cracks become un-

FIG. 7. Graph ofpm vs t for cracks with spacing 2l0m, when
L /Lc=16. The solid line is for the case when all cracks propagate
together, while the dashed line is when every second crack has
stopped, aftertm1. The dotted line is a graph ofp0 versust.

FIG. 8. Graph of]2S8 /]p2 vs t for L /Lc=16. The solid line is
for equal length cracks and the dotted line for every second crack
stopped,t. tm1.

FIG. 9. Schematics of the final crack states for differentL /Lc,
whose value is shown next to each configuration.
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stable, after which every second crack propagates.
For L /Lc=32, the state of equally spaced cracks having 3

different penetration depths is achieved by a second instabil-
ity, so that ultimately only every fourth crack propagates.

The schematics in Fig. 9 could be interpreted as a set of
layers of different material, with the brittleness of the mate-
rial increasing withL /Lc. In that case it seems that as the
brittleness increases there is a set of “principal” cracks
whose spacing does not change with brittleness, but the
other, less penetrating cracks become closer together. The
L /Lc=32 example gives the impression of crazing on the
surface of a brittle material with occasional deep cracks,
while theL /Lc=2 example gives the impression of cracking
of a more ductile material. Alternatively, they could be inter-
preted as a set of layers of the same material, but with in-
creasing amounts of shrinkage withL /Lc. As the shrinkage
increases, the crack spacing observed on the surface reduces
and the complexity of the pattern of penetration increases.

C. Effect of slab thickness

The scalings used above are covenient for computation,
but it is useful to rescale the results to consider the effect of
different slab thickness on the crack spacing and penetration.
The scaled crack spacing,l /L, and penetration,p/L, when
multiplied byL /Lc are dependent only on the material prop-
erties and similarly for the scaled time,t, when multiplied by
sL /Lcd2. Figure 10 shows graphs ofl /Lc and p/Lc against
sL /Lcd2t, for different values ofL /Lc, showing the effect of
varying the slab thickness for a given material. For a thin
slab, there is no minimum in thel /Lc curve, but for thicker
slabs the minimum appears.

Notice that the minimum crack spacing approaches a lim-
iting value asL /Lc increases, as does the time at which the
minimum crack spacing occurs. Thus the crack spacing ob-
served on the surface of a slab becomes independent of the
slab thickness, but the spacing further into the slab may be
different, due to the effect of the period doubling phenom-
enon, as shown by the schematics in Fig. 11. The results
indicate that there is a minimum crack spacing for cracks
propagating into a semi-infinite slab, represented by the limit
L /Lc→`. In such a case, there will be surface cracks at the
minimum spacing, but further into the sample the crack spac-
ing will continue to increase via the period doublings. Even-

tually, the spacing will be sufficiently large that the cracks
will be essentially independent.

Also, notice that the cracks appear at about the same time,
with the same penetration, for sufficiently largeL /Lc, which
is to be expected since this is the scaled time at which the
length scale associated with diffusion of heat is comparable
with the Griffith crack length,Lc. At this time, there is suf-
ficient stress due to shrinkage to overcome the energy barrier
between the uncracked and cracked state. This barrier is evi-
dent in the contour plots of Fig. 3.

The experiments of both Groisman and Kaplanf25g and
Shorlinet al. f26g show increasing crack spacing with depth.
Although it is not stated by the authors, the results of Shorlin
et al. stheir Fig. 9d may indicate that the crack spacing is
approaching a limiting value.

D. Limiting behavior

At steady state the numerical results show that the crack
spacingl /Lc,sL /Lcd3/4 andp/Lc,L /Lc assL /Lcd→`. The
latter can be understood because the cracks follow the heat
diffusion and the former can be derived from a simple scal-
ing analysis, along the lines of that given by Breneret al.
f27g. For sL /Lcd@1 sat values larger than shown in the
graphs hered, the crack penetration greatly exceeds the crack
spacing. In that case, the regions between each crack can be
considered as thin plates, with the exception of the region
near the crack tip. Then the bending of those plates is de-
scribed by the fourth order equation

8Yl3

12s1 − n2d
n2ux = YaDT, s11d

wheren is the two-dimensional Laplacian. The term on the
right-hand side is a measure of the stress in the plates due to
the shrinkage. This then leads to an order relation forux of

FIG. 10. Graphs ofl /Lc andp/Lc vs sL /Lcd2t for varyingL /Lc.
The values ofL /Lc are shown beside each curve. A logarithmic
scale has been used to clearly illustrate the small time behavior.

FIG. 11. Schematics of the final crack states for differentL /Lc,
representing different slab thickness, whose value is shown next to
each configuration.
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ux ,
aDTp4

l3
s12d

and the change in volume due to the opening of the crack is
then

V ,
aDTp5

l3
, s13d

which results in a release of elastic energy per plate of

We , − YaDTV, −
YsaDTd2p5

l3
.

This, when combined with the energy asociated with crack
opening and scaled byhl, gives

DE8 = A
p

l
− B

p5

Lcl
4 s14d

for some unknown constantsA andB. For local equilibrium,
minimization ofE8 with respect tol is required, giving

l3Lc , p4 s15d

which, whenl and p are scaled withLc gives the observed
limiting behavior when taking into account thatp,L.

In fact, the numerical results show that the limiting be-
havior holds over a large range ofL /Lc for the steady state
solutions, only deviating at smallL /Lc. Nevertheless,l /Lc
decreases monotonically down to low values ofL /Lc, and
this helps to explain why there is a minimum in the crack
spacing for largeL /Lc but not for smallL /Lc, since the crack
spacing is always decreasing at early times, but must then
rise again ast→` for L /Lc above some particular value
sabout 2.5 from the numerical resultsd in order to achieve the
limiting behavior.

IV. CONCLUDING REMARKS

The approach taken here provides a mechanism for deter-
mining a unique value for the most likely minimum crack
spacing in regular crack arrays associated with shrinkage.
The two possibilities identified are as follows.

s1d For low L /Lc the minimum spacing only occurs at the
end of shrinkagest→`d, with a succession of additional
cracks being added until this time.

s2d For L /Lc greater than some critical valuesabout 2.5

for the configuration discussed hered, the minimum spacing
occurs at a finite time,tm. There after, cracks will propagate
uniformly with that minimum spacing, subject to a potential
spatial period doubling instability.

The combination of the minimum energy approach with the
identification of a minimum crack spacing and its resultant
constraint on further propagation, along with the stability
criterion for uniformly propagating cracks, allows determi-
nation of the minimum energy crack configuration for all of
the shrinkage time. Hence the final state of the cracked ma-
terial can be determined.

No consideration has been given here to the initial crack
formation, or indeed the mechanism of adding extra cracks at
early times, before the minimum crack spacing is reached.
Presumably, a mechanism of halving crack spacing, as a kind
of symmetrical analogy to the period doubling that occurs at
later time, is possible. This is mostly of interest at lowL /Lc
where the process occurs gradually, compared to higher val-
ues where the minimum spacing occurs in a short time rela-
tive to the time required for diffusion of heat.

Although only a simple geometry has been considered
here, with specific boundary conditions, it is likely that simi-
lar behaviour will occur in other configurations. Moreover, it
is expected that the same behaviour will be found for the 3
dimensional situation, and this has been observedsincluding
the spatial period doublingd in experiments on starch col-
umns f28–30g and coke formationf31g. The computations
associated with 3D, along with the topological issues of the
crack pattern, are more formidable, but progress on simple
geometries should be possible. While there is experimental
evidence that the kind of crack patterns predicted here exist,
it is difficult to make quantitative comparisons of crack spac-
ings and penetration in a particular example. In order to do
this, more realistic boundary conditions, along with good
estimates of the material properties are necessary. The moti-
vation for this work arose out of a study of coke formation,
and such data is not currently readily available. Moreover,
coke formation has the added complication that the coke slab
is growing in thickness. Nevertheless, the aim is to develop a
quantitative crack spacing predictive capability.
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